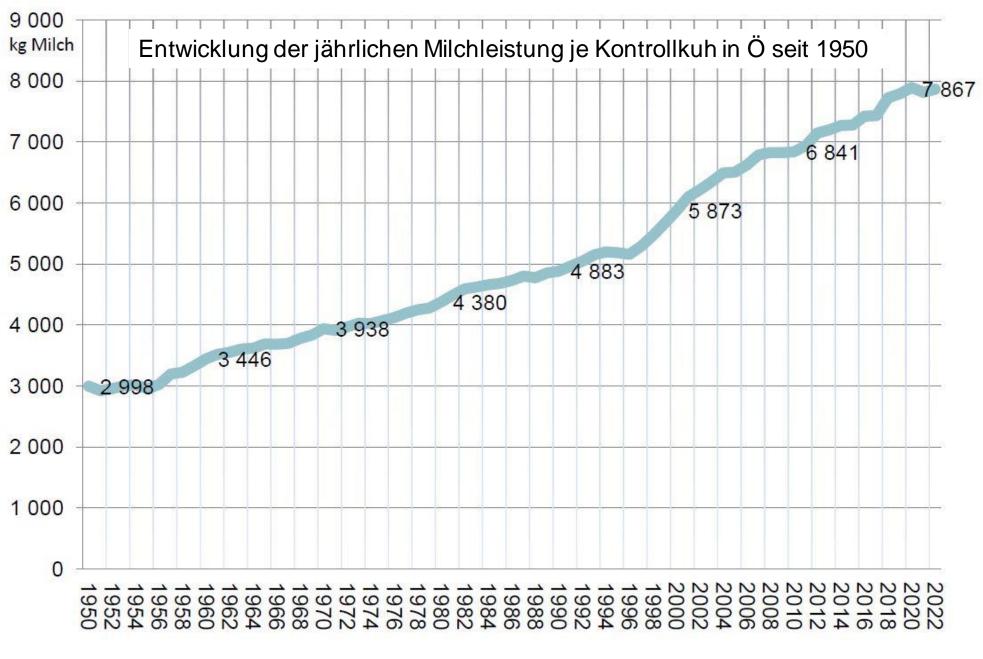
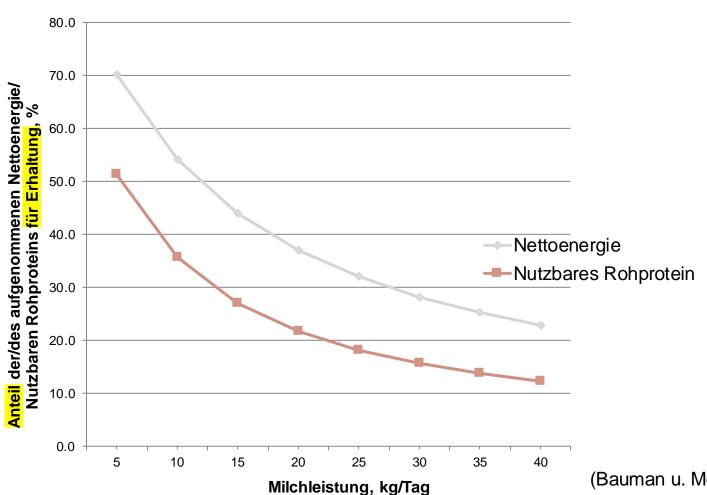
Speeding up Innovation

VERNETZUNG VON FORSCHUNG UND PRAXIS in der biologischen Landwirtschaft

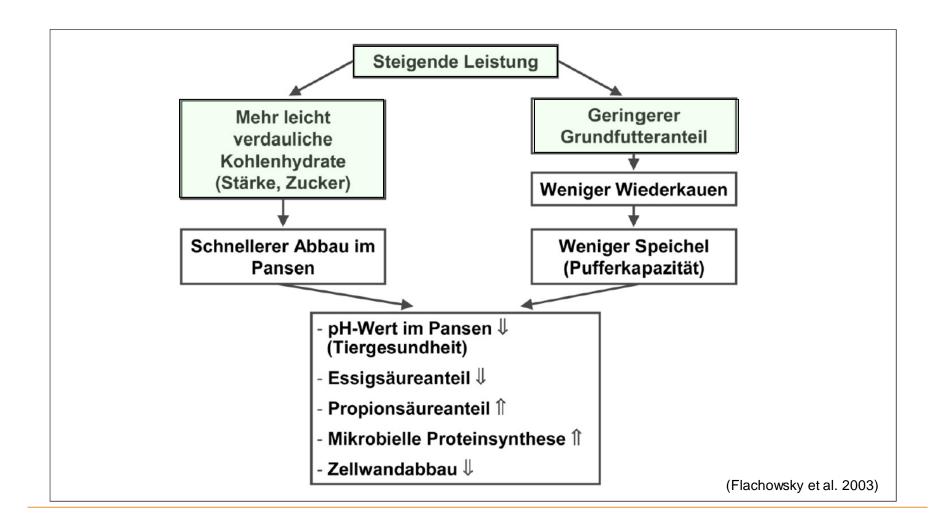
Effizienter Grundfutter-Einsatz in der biologischen Milchkuh-Fütterung: Wege zur optimalen (Grund-)Futter-


Wege zur optimalen (Grund-)Futter-Verwertung

Wilhelm Knaus, Katrin Bauer, Werner Zollitsch


Inhalt

- Einleitung
 - Leistungsentwicklung
 - Triebkraft
 - Rationsanpassungen
 - Flächenkonkurrenz
- Forschungskooperation HBLA Ursprung BOKU
 - Nebenprodukte
 - Grundfutter-Effizienz
 - Partikelgröße (Struktur), Silage vs. Heu, Schnittzeitpunkt


Steigende Leistung → "Verdünnung" des Bedarfs f. Erhaltung

(Bauman u. McGuire, 1995)

Milchleistung und Kraftfutter-Einsatz

Flächenkonkurrenz

Lebensmittel ← → Futter

Landnutzung

35% der Ackerfrüchte werden verfüttert

 Würden die 16 bedeutendsten Ackerfrüchte zu 100% der menschlichen Ernährung zugeführt → 1 Mrd. t/Jahr mehr Lebensmittel

(Foley et al. 2011, *Nature*)

"..., die ausschließliche Verwendung v. fruchtbarem Ackerland zur Erzeugung v. Futtermitteln,

→ reduziert die Menge an potenziell herstellbaren Lebensmitteln unabhängig davon, wie effizient ein solches System organisiert ist."

(Foley et al., 2011, *Nature*)

Forschungskooperation HBLA Ursprung – BOKU (I)

2013 - 2016

Rationsoptimierung in der Milchkuhfütterung zur Reduktion des Einsatzes potenzieller Lebensmittel.

"Nebenprodukte"

Dr. Paul ERTL

J Dairy Sci (3x), Renew Agric Food Syst

2017 - 2020

Verbesserung der Grundfutter-Effizienz in der grünlandbasierten, biologischen Milcherzeugung.

Dr. Andreas HASELMANN

J Dairy Sci (2x), Anim Feed Sci Technol, Int Dairy J, Appl Anim Behav Sci, Renew Agric Food Syst

Forschungskooperation HBLA Ursprung – BOKU (II)

Effekte der Partikelgröße, Konservierungsmethode sowie des Schnittzeitpunktes auf die Grundfutter-Effizienz in der grünlandbasierten Milcherzeugung "Forage Efficiency II"

Doktorandin: Katrin BAUER, MSc.

Franz Griessner, Lehrbetriebsleiter, HBLA Ursprung

Forschungsprojekt "Nebenprodukte" Rationen

Winter 2013/14:

- GF u. leistungsabhängig KF über Transponder:

KON: Standard-KF (Getreide, Erbsen, AB);

NP: Mischung aus 4 Nebenprodukten (TS, Maisfuttermehl, Rapskuchen, Sojakuchen (9%))

Winter 2014/15:

TMR, 37,5% Heu, 37,5% Silage, 25% KF:

KON: Standard-KF (Getreide, AB, Melasse);

NP: Weizenkleie u. TS (56:44)

Winter 2015/2016:

- TMR, 50% Heu + 50% Silage

OHNE: kein KF

MIT: 37,5% Heu, 37,5% Silage, 25% Weizenkleie u. TS (56:44)

Ausgewählte Ergebnisse

	2013/14		2014/15		2015/16	
Parameter	KON	NP	KON	NP	OHNE	MIT
Futteraufnahme, kg TM/d	21,2	21,1	18,1	18,5	17,2	19,0*
Milchleistung, kg/d	26,0	27,8	22,2	22,5	19,8	<mark>21,5</mark> *
NLP _{Energie} , MJ/d	18,0	69,2*	16,1	71,4 *	67,7	68,1
NLP _{Protein} , g/d	266	<mark>662</mark> *	321	<mark>720</mark> *	648	<mark>670</mark>

NLP, Netto-Lebensmittel-Produktion

^{*}Unterschiede innerhalb eines Jahres signifikant mit $P \le 0.05$

Forschungsprojekt "Grundfutter-Effizienz"

Jän. – Feb. 2018: Partikelgrößenreduktion einer TMR

TMR "lang": 43% Heu, 37% Kleegrassilage, 20% KF

TMR "kurz": 43% Heu (0,5 cm, + Hammermühle, 2-cm Sieb),

37% Kleegrassilage (0,5 cm), 20% KF

Merkmal	TMR "lang"	TMR "kurz"	P-Wert
Futteraufnahme, kg TM/d	21,0	<mark>22,8</mark>	< 0,01
Leistung, kg ECM/d	27,0	<mark>29,3</mark>	< 0,01

Partikelgrößenverteilung in TMR

Schüttelbox

Siebgröße, mm	TMR "lang"	TMR "kurz"
Oberes, 19	74	23
Mittleres, 8	10	26
Unteres, 1,18	12	37
Boden	5	14

Forschungsprojekt "Grundfutter-Effizienz"

- Jän. Feb. 2019: Silage-Heu-Vergleich
 - Schnitt, 9 ha Dauergrünland und 4 ha Kleegras,
 gleiche Behandlung am Feld (28 h),
 Ernte der Schwaden (56% TM) in abwechselnder Reihenfolge

Merkmal	Silage	Heu	P-Wert
Aufnahme, kg TM/d			
Grundfutter	17,8	18,3	0,07
Kraftfutter	3,6	3,5	0,30
Gesamt	21,3	<mark>21,9</mark>	0,08
Leistung, kg ECM/d	28,5	<mark>30,1</mark>	0,09

Forschungsprojekt "Grundfutter-Effizienz"

Jän. – Feb. 2020: Zinken-Mähaufbereiter bei Heuwerbung

2. Schnitt, 3,6 ha Dauergrünland u. 4 ha Kleegras

½ der Flächen ohne bzw. unter Einsatz des Aufbereiters

gleiche Behandlung am Feld (~48 h), Ernte bei TM-Gehalt v. 80%

Merkmal	Kontroll- Heu	Versuchs- Heu	P-Wert
Aufnahme, kg TM/d			
Heu	18,2	18,5	0,50
Kraftfutter	3,6	3,5	0,19
Gesamt	21,8	22,1	0,49
Leistung, kg ECM/d	29,6	29,2	0,76

- Jän. Feb. 2022: Partikelgrößenreduktion v. Heu
- Heu-Anteil in Rations-TM > 83%

A. Haselmann/HBLA Ursprung

Jän. – Feb. 2022: Partikelgrößenreduktion v. Heu

- Dauergrünlandfläche, 2. Schnitt
 - TM-Gehalt bei Ernte: 75%
 - Heu "lang" vs. Heu "gehäckselt", 13,6% XP (TM Basis), ad libitum
 - Standhäcksler, theoret. Schnittlänge 0,5 cm
 - o KF-Ergänzung (21% XP): 4 kg FM/d

Jän. – Feb. 2022: Partikelgrößenreduktion v. Heu

Schüttelbox

Siebgröße, mm	Heu "lang"	Heu "gehäckselt"
Oberes, 19	72	21
Mittleres, 8	8	20
Unteres, 4	7	20
Boden	13	39

Jän. – Feb. 2022: Partikelgrößenreduktion v. Heu

Merkmal	Heu "lang"	Heu "gehäckselt"	P-Wert
Aufnahme, kg TM/d			
Heu	17,3	<mark>18,3</mark>	0,28
Kraftfutter	3,6	3,6	0,99
Gesamt	20,8	<mark>21,9</mark>	<mark>0,28</mark>
Milchleistung, kg ECM/d	24,9	<mark>25,7</mark>	0,45

Leistung, kg ECM/d

- Jän. Feb. 2023: Silage-Heu-Vergleich_modifiziert
 - Schnitt, 9 ha Dauergrünland und 4 ha Kleegras,
 gleiche Behandlung am Feld (28 h),
 Ernte der Schwaden (38% TM) in abwechselnder Reihenfolge

Merkmal	Silage	Heu	P-Wert
Aufnahme, kg TM/d			
Grundfutter	13,9	16,3	< 0,01
Kraftfutter	3,6	3,6	0,99
Gesamt	17,5	<mark>19,9</mark>	< 0,01

25,2

28,1

< 0,01

Fazit

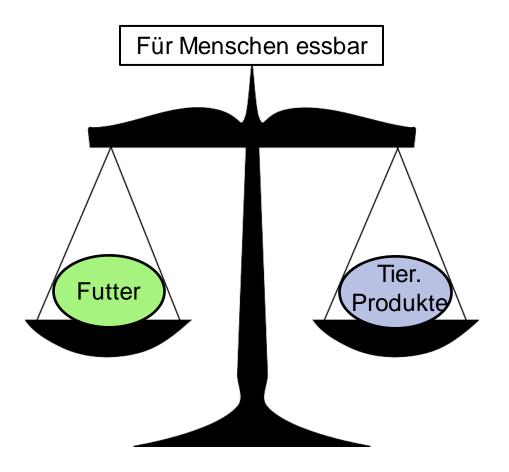
- Nebenprodukte
 - Substanzielle Steigerung der Netto-Lebensmittelproduktion

- Grundfutter-Effizienz, GF-Anteil in Rations-TM: > 80%
 - Partikelgrößenreduktion
 - TMR (feucht) ↑↑
 - Heu ~ ↑
 - Silage vs. Heu
 - Heu ↑↑, wenn Silage praxisüblichen TM-Gehalt aufweist
 - Schnittzeitpunkt:
 - Zuckergehalt in Abendmahd: +10%

Danke!

Bundesministerium Land- und Forstwirtschaft, Regionen und Wasserwirtschaft

(HBLA Ursprung, accessed April 27, 2022)



NLP

NLP = (essbare Energie bzw. Protein Output) – (essbare Energie bzw. Protein Input)